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INVESTIGATION OF A NONLINEAR CONTROL SYSTEM ‘

By I. FliIgge-Lotz, C. F. Taylor, and H. E. Lindberg
\

SUMMARY

Nonlinear elemeti are sonwtinws added to linear control
eystenw in order to improve the reqmwweof the system to an
arbitrary input. This cm be dune in dij%wnt ways, one of
them being tb cariation of the toe+’i.cb% of the diferentti
equation descm”bingthe s@em before the nonlinear elementi are

oadded. This variation of the wetit.s may be dmw in a
continuous or in a dticontinm way. In t?w prewni paper
a discontinuous variuiion of the we~cient.s is studied in detail
and incestigtid for prao%z? use.

The nonlinear feedbmk is applied to a 8econd-ordersy8tem.
Fromformer analytical cowid.era$ti the process of w@ol h
visualia?d as estilishi~ an wemble of linear 8econd-order
di$ereniicd eguation$ (80mc wiz% stile and 8om? with utile

homogemwus 801utwm3) and switching from one equation to
another 80 a-s to maintain wna.?lirwtuntmeow error for rela-
tively arbtiray inpwk. Physics.Uy, this control proms i-s
realimd with a linear second+der control sy~temto which have
been added po8eibl.edixcreti mmbinatiom of ~roportti and
derivativefeedback. The particular combination of feedback
employed ai any in-stamtti detmnined by a feedbazk tihi~
circuit which h in turn operated by wmxedbinary inforrw%n
obtainedfrom the mdpu$, OU@U$derivatwe, error, and error
derivative (nanwly, % signx of tlw8e variabla). Techni.gwe8
that are common to the digital Computerfil.d are wed to imple-
nunt this witching m“reuit.

Once phyw2a.1realizaiwn iv completed,simuib%n techniqua
are used to 8tudy and emhuu%the performance of h nonh.ear
control system and to compare d w“th a linear systemfor a wide
cariety of inputs. A aktailedquan$daiioestudy of the injk.ence
of relay dei?aysand of a transpoti delay h aiko given. In
addiiion, the e~tm%of physical imperfect% i!hutare likely to
be encounteredin any application of the control theory are cen-
ddered (e. g., velocity and accelerationlimti].

An analysis of tlu experimental rmults shows tha$this type
of nonlinear conirol systemperfornMbetterthun a linear control
8y8t4mhuving a natund freqwn.cy 16 tima greater. For thti
comparison, performance ix evaluated in terms of the average
value of the magni$ude of the in#aniamww error for band-
limi.tedinpw%. Further, in co@ast with th-ehear system, the

nonlinear system performance h virtuuily independent of vuti-
ation in the dumpirq factor of the sy8tem.

A prelimimmy extenmbn of thix type of nonlinear control
concept to higher order systems k pre8enM. Experimental

re& are givenfor a third-order system. The8e remh%show
that jw.$tw in the 8econd+mdercase the nmdinear eystem per-
formance is beiterthan that of a comparablelinear system.

INTRODUC~ON

With the demand for more exacting performance, more
emphasis has been placed on nonlinear aspects of control
systems. The term “control systems” can be interpreted
to include active networks and feedback amplifiers as well as
servomechanisms. From the standpoint of analysis, un-
intentional nordinewities have to be taken into account to
explain performance. From the standpoint of synthesis,
intentional nonlinesxities have been introduced to improve
performance. However, up to this date only in special
cases have advancements been obtained in the field of
nonlinear control systems.

The designs of nonlinear control systems have inherent
advantages. One advantage is that the response of a non-
linear system at a certain time can be made less dependent
upon past response than can a linear system of comparable
power-handling capability.2 This means that the non-
linear system can be made to follow more arbitrary classes
of inputs with less dynamic error than the comparable linear
system. Another advantage is that the mathematical
difficulties encountered may actually be conducive to con-
sideration of more realistic criteria of performance. In the
nonlinear realm it is essentially M easy to invoke a criterion
such as the minimization of instantaneous error for non-
stationary random inputs as it is to invoke the largest
possible flat amplitude response for sinusoidal inputs.

In the present paper a control system of second order,
which was &t suggested by Fltigge-lhtz and Wumih on
the basis of analytical studies (ref. 1), is investigated. The
physical realization of this system and its performance are
studied in great detail by Dr. I. Fliigge-Lotz and Dr. C. l?.
Taylor. A detailed quantitative study of the influence of
relay delays and of a transport delay was made by Dr. H. E.
Lrndberg and is given in appendix A.

This investigation waa conducted at Stanford University
under the sponsorship and with the financial assistance of
the National Advisory Committee for Aeronautics. The
authors wish to thank Dr. A. M. Peterson of the Electrical
Engineering Department of Stanford University for his
continued interest and his most helpful advice on the

I Suprmdes NAOA TN ?$33j“Investlgatlonof a NonllnearConbmlSyatian”by L F1-htz and O. F. Taylor, 19S7.
j In Mneartheory,the impukermpcmseartheantomrrehUonfnnctfonof tlmsystemgIvasan lndldfcm ofhow pt reqmn?ois weigkad.
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electronic problems which were encountered during this
investigation. They also wish to thank Dr. G“. S. Bahrs for
his useful suggestions for a special transistor switching
circuit.

SYMBOLS

A peak-to-peak amplitude of input
a,b,c parametem defining a system
(z+,b+,c+ constants used in appendix B.
ZJ,E, parameters in diilerential equation for control

servo
B viscous damping of motor and reflected load

referred to motor shaft
D linear damping factor
E=y–x=–e
e instantaneous error, z—y
f function

9f,90 input and output of Pad6 circuit, respectively
H(p) transfer function, l/(ap+ 1)
I inertia of motor rotor, gears, and reflected load
~=~

KI,KZ grin constants
k. constant of proportionality between output

velocity and back electromotive force
M constant depending on initial conditions

P operator, indicating differentiation with re-
spect to independent variable; that is, dJdt if

real time variable is used and d/dr if non-
dimensional time variable is used

T repetition rate or period
t time

h switching delay -

h maximum allowable switching delay
v input voltage
x input into system

Y output from system

ii approximation of output
symbol used to denote different constants

;.= –1P w (v’e)-@ w @’e’)
(Pm,7n)mfn

l&&ll’,27
7.=—17 w
8
.s
Jl,v .

P
u
T

Q
u

:=L Q) =f/~

()
( )’
( )//

0
=.

smallest values of parameters giving good
nonlinesx system performaJM8

positive constants
(ye) –ZY sgn (ye’)

positive constant
small positive quantiQ-
coordinatea introduced in appendix E
radius of curvature
real part of mmplex tiequency variable u+iu
nondimensional time vaxiable normalized with

re9pect to a,, ad
nondimensional frequency, co/wp
tiequency
natural frequency of undamped linear system

time average
d( )/dr
(P( )/d?

equality sign in equations which describe
operations (see eqs. (2) and (3))

Subscripts :
(2.s at an actual switch
d ideal or desirable
e error
‘i initial or input
{m image
L limit
lin linear “,

point

m,n=0,1,2,3
mux maximum or upper bound
min minimum or lower bound
no?h?zh nonlinear
o optimum, output

REVIRW OF LINEAR CONTROL THEORY

It is desirable to obtain from linear control theory some
useful concepts that can be generalized to the nonlinear
case. These concepts are:

(1) Operational notation
[a) Transfer functions
(b) Block-diagram representations

(2) Control criteria
(3) Control through parame~ers

At the onset second-order systems are considered. How-
ever; there is no di%iculty in extending these concepts to
higher order systems.

OPERATIONAL NOTATION, TRANSPER FUNCTIONS, AND BLOCK DIAGRAMS

Consider a physical process or situation in which tho
output is described in terms of the input as

(1)

where a, b, and c are constants, y=y(t) is the output, and
z=z(i!) is the input.

Utilizing the operator p=d/dt, equation (1) may be
written

((z#+bp+c)yAz (2)

@q. (2) reads “(a#+bp+c) operating on y equals opera-
tionally z.”) Formal solution of equation (2) for the ratio
of output over input yields by definition the operational
transfer function for the @stem. Thus

?Q 1
z a~+bp+c (3)

The operational block diagram for the system is obtained by
placing inside a box the transfer function, equation (3).
Coming into the box is the input; going out of the box is the
output (see sketch a).

x

-D

1 V

Input a~+bp+c output

Sketch a

Here transfer functions and block diagramE are utilized
merely as shorthand operational notations for diilerential
equations. This is opposed to the Laplace transformation
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viewpoint where trrmsfer functions (and thus block dia-
grams) have the properties of functions of the complex
frequency variable, p= u+iu. The reason for stressing this
interpretation is that shorthand (operational) notation has
prowm useful in the transition to nonlinear control whereas
the L&place transformation viewpoint (e. g., synthesis in
tho complex frequency plane in terms of poles and zeros)
has not.

CONTROLCRITERIA

To gage the performance of an actual system an ideal or
desirable system is usually established as a straight through
connection (i. e., yd=x as denoted in sketch b, a block dia-
gram of an ideal system).

-i-

x

Input .1

Sketch b

yd

output

Comparison between the desired output yd and actual out-
put y is accomplished by utilizing the instantaneous error:

A control criterion or criterion of performance is deiined as
the minimization of some property of the instantaneous
error e for a given class of inputs. The mhimiziig process
crm be exact (i. e., resulting from a variational formulation
of the problem) or approximate.

CONTROL TEROUGE PARAMETERS

In linear systems the process of control is usually physi-
cally obtained by applying feedback and/or compensation
to the system that is to be controlled. A control criterion
is rerdized (QS closely as possible) by adjustment of these
applied ~qurmtities. The concept of control through param-
eters is an interpretation of this control proces9 in terme
of the diilerential equation describing the process. A simple
example illustrates this concept.

Consider the position control servo shown in figure 1.
The uncontrolled (open-loop) system consists of an amplifier,
armature-controlled motor, gear train, and load. Closed-
Ioop operation is obtained by utilizing proportional and
derivative feedback. The gain constants .& and KX are
adjustable. Armature inductance has been neglected.

,--%nuningpoints----- Motor,geartrain,and load-.,
! -... ,’
i .. .

x
K,

km —------ Y

Input /7(47+B) output
. Goln –

w
FIQUR~l.—Bloak diagram of simple positional servo. J, inertia of

motor rotor, gears, and reflected load; B, viscous damping of motor
and reflected load referred to motor shaft; h, constant of propor-
tionality between output veloci@ and baok electromotive force (it
irmludesarmature resistance and gear ratio from motor shaft to
load).

From the block diagram the difFerential equation for tho
open-loop system may be written:

(&)$Y+(z%)#=’(’)(4)

Similarly, the closed-loop differential equation is

(&)%+r%H+’l)~=’@)- ‘5)
In either case the differential equation is of the form

where a set of three parameters Z, ~, and Z completely
characterizes the system. It is possible, then, to view the
process of control in terms of these parameters. One starts
with a parameter set (a,b,c) defining the uncontrolled system. .
A control criterion yielde an optimum parameter set
(a,b,c) ~. Control (feedback and/or compensation) is intro-
duced ideally making it possible to adjust (a,b,c) to (Q@,c) ~.
In the above emunple the gain constants K1 and K2 afford
this adjustment.

This adjustment of the coefficients may be done in a con-
tinuous or a discontinuous way. In reference 2 Schmidt and
Triplett have described an interesting and eflicient way to
vary the coefficients of a basically linear system continuously.

NONLINE.$R CONTROL

TRANSITION TO NONLINEAi CONTROL

In the preceding section it has been mentioned that the
process of linenr control of second-order systems may be
visualized as the adjustment of the parameter set (a,b,c) to
the set (a,6,c)0. The term optimum was used in the sense
that some criterion of performan& was approached as closely
as possible.

It still seems logical in the transition to nonlinear control to
hypothesize control through parameters. The transition is
obtained by allowing the parameter to become functions-of
the output y(t) and the input z(t); that is, .

a+i(z,y)

~=’wy), “ -,.,

C+=c(z,y) .,,, - . .

The mathematical description of the system is now
\ . .. -.,

d%Y) #+b(%Y) ,g+@,Y)Y=@) (7)

Without lmowing the specfic nature of the functions a(z,y),
~(x,Y), ~d C(W) it may be seen that equation (7) is a non-
linear, inhomogeneous, and/or nonautonomous differential
equation. Mathematically, little in general can be said
about the solution of equation (7) given the function set

a(z,Y), ~(z,Y), and C(Z,Y). It seems, then, even more hopeless
to attempt a synthesis problem which” involves both finding
the function set [a(z,y), b(w), c(z,y)]~ for a speciiied control
criterion and then physically realizing the system described
mathematically.
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NONLINEAR CONTROL THRORY

One analytical attack on the nonlinear control-system-
synthesis problem has been made by Fltigge-ibtz and Wunch
(refs. 1 and 3 to 5). They suggested varying the coticients
a, b, and c, not continuously, but discontinuously. That
means that for tl<t<~ there is one set of coefficients, -for
h<t<t~ there is another set of coefficients, and so on. The
different sets of coefficients are chosen in advance, but the
times tifor change from one set to another are determined
by the value and the decrease or increase of the deviation
(z-y). In other words, the system is linear in any interval
t<t<tiw, but is nonlinesr in the whole. The transition at
any switching time ti occurs with continuous values of y(t)
and dy/dt, but discontinuous values of (&y/d&).

13nr

l-n
Ym

Dmnpitlg
-l-n

Gain

T T–
LL~
I

Fmmm 2.—Illostration of stepwise nature of parametersp. and y..

Phase-plane techniques were used for studying appropri-
ate sets of coefficients and the appropriate dependence of the
switching times on the deviations.3 The authom of ref erenoes
1 and 3 to 5 succeeded in Iinding a switching rule which
assures good performance in a multitude of cases. Their
control system is mathematically dwctibed in the following

where

Z(T) input

y(T) output

D linear damping factor (when &=ym=O)

T nondimensional time variable norndized
spect to u,; that is, T==$

6.), natural frequency of undamped linear
D=/3m=yz=0

P~= —1PSgg (y ’e)—# sgn (y’e’)

m=O, 1,2, 3

y.= —17 w (Ye)—27 9 (Ye’)

n=O, 1, 2, 3,

+1 forj>O
~ ~)=fi={ –1 forj<O

(8)

with re-

system,

JFordetMstbemaderisrtfmrei toreken~Iand8to S. Ref~mlmnWrstbeidem
butfimm~tit tiehq~mmti fltifititi~ mmatis,of
wblch rekemx 5 Is pmbeldy tbe mast ~le. Flgme ~ p. 12, and dgmo 33, p. 70, of
lWf2r2rlC05W halpin@tilw wttOfnt@dwithtbOpki0@311e t2’8j&?tCE_YOfOn oUtpUL Same

oftbewfgimd etudkamdwmfbed ogolnlaterintlieptpa~wku the W%XIWUIm
of the.syrle mkdkumrtl.

e instantaneous error, e= (y~—y) = (z—y)

( )’=d( )/d7

Actually, equation (8) is a normalized form of the control
equation derived by Fl@ge-Lotz and Wunch. However,
the notation has been somewhat ohanged. See appendk B
for a comparison of notations and the normalization involved.

The subscript convention is

l%=d+$ ‘YS=l-f+fl

92=1B–@ 72=1’Y-2’Y

1%=–lB+@=-1% 71=—17+27=.—72

p,= –&–&= –p3 .yo=-ly-fl=-y3

PROPRRTTES OF EQUATION (8)

(9)

The following properties of equation (8) me noteworthy:
(1) Equation (8) is a piecewise linear but overall nonlinear

d.itlerential equation. -
(2) The parameters & and Y. are stepwise switching func-

tions of time (their implicit variable). This property ia

illustrated in figure 2.
(3) The time of switching and the particular combination

of the parameters pm and YZ employed at any instant are
explioit functions of the output y and the input cc. Spc-
ciiically, they are determined by quantized information
derived horn the output, output derivative, error, and error
derivative, namely, the sign of the products sgn (y’e), sgn
(y’e’), sgn (ye), and agn (ye’).

(4) There are basically 16 m,n subsoript combinations and
thus 16 /3n,Tn parameter combinations. However, a detailed
study of property (3) shows that only 8 are allowed. TIIo
allowed combinations may be

m=n=O, 1, 2, 3
or

m75n

m+n=3

The reason for the “exolusion principle” on coefficient
combinations stems from a desire to obtain mirrored-irrmgo
outputa for mirrored-image inputs; that is,

Y*(7) = –v(~)
is desired when

X*(7)=—Z(7)

(s) The control oriterion that waa employed in obtaining
the fictional dependence of pm and y, was

lYrYl=l~-yl=lel<e

where ● is a small positive quantity. This criterion of main-
tenance of small instantaneous error between desired output
and actual output enabled reduction of equation (8) to tlm
approximate autonomous diilerential equation (see refs. 1
and 3 to 5)

y“+2D(1+13Jy’+7~= (z–y)

=0 (lo)

Thus pbw+plane techniques could be employed to find (he
functional dependence of& and Y..
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(6) Once the linear damping factor D is tied the prows
of control is obtained by switching parameters /3. and Y3.
Equation (8) consists of an ensemble of eight (see property
(4)) linear differential equations with constant coeilicients.
The process of control may be visualized as the switching
from one member of the ensemble to another. This switch-
ing is determined by quantized information derived from the
input and output (see property (3)). From another point
of view (consistent with the approximation described in
property (5)), the output y is to be forced to satisfy two
conditions simultaneously, that is, both sides of equation
(10). This is approximately possible by switching to
various B. and 7. parameter combinations and can be
visualized as the process of switching to various phase
trajectories of equation (10) in the phase plane of y’ against y.

DD3CUSS1ONOF NONJXNEAR CONTROL

In the section entitled “Transition to Nonlinear Con&ol”
a logical transition to nonlinear control systems utilizing the
concept of control through parameters is suggested. How-
ever, mathematical difEculty hampera the development of
this approach. In the next two sections a particular non-
linear control theory is presented. This theory constitutes
the first step in the synthesis of a nonlinear control system
which obtains control through parameters. Since the func-
tional dependence of the parameters has been established,
the problem is reduced to finding a set of five (constant)
parameters (D, U9,@J17Jfl).. It should be appreciated, how-
ever, that even the optimization of this five-paxameter set
cannot in genexal be accomplished analyticdy because of
the overall nonlinear nature of the problem.

Aside from questions on the analytical optimization of
paramotma in equation (8), there are equally important
prncticd questions such as:

(1) Can a useful control system that is described by the
nonlinenr differential equation (eq. (8)) be
realized?

(2) If the system is realizable, what is its physical
nature?

(3) If the system is realizable, how does it compare in
performance and complexity with a “good”
secondarder linear control system?

There are then mathematical difficulties on the one hand
and physical difllculties on the other. The mathematical
difficulties could be handled by numerical methods of inte-
gration of the differential equation (e. g., utilizing a digital
computer), However, this would give little insight into the
nature of a system that is controlled through discontinuous
variation of the parameters /3~ and Ym. It has been found
advantageous to investigate the physical questions tit and
then -to utilize simulation techniques (analog computer) to
investigate the analytical properties of this type of control.

PHYSICAL REALIZATION

PHYSICAL MODEL

It is desirable to study the nature of a physical control
system that is described by an ensemble of eight linear
differential equations with control being accomplished by

switching from one member of the ensemble to another.
To do this, equation (8) is rearrsmged as shown below:

$#+m$$Y=Z(T)-(2Z%#-’Y#Y) (11)

‘or in operational notation

@+2DP+I)Y~x-(2U3mP+Y.)1/ (12)

Forgetting for the time being that the parameters p. and
~= are actmdly functions, one interpretation of this opera-
tional equation and thus of equation (8) is shown in figure 3.

,

I

FIGURE3.—Block diagram of equation (8) assuming that& and T.
are constant (denoted by enoirolingdotted line).

Figure 3 can be modified to take into account the fact
that & and -y. are stepwise switching functions of time,
their implicit variable (i. e., & and y. can each take on four
discrete values). This is shown symbolically in fibwe 4.
The explicit functional dependence of the parameters P. and
-y. has not yet been given and is thus indicated as a switch-
ing logic of undefied character.

Y

Outp.lt

/ l–– —-l

Yo I I
I I

Y! ~ J I

Y’ ~

Y3

#–
–1

I Switching I

F&mm 4.—Block diagramof equation (8) taking into account
stepwiseawitddng nature of L%and Y*.
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Utilizing the block diagram of figure 4, the physical inter-
pretation of the nonlinear control system described by equa-
tion (8) is quite straightforward This system consists of:

(1) A linear feedforward portion. This portion could be
a linear control system in itself (e. g., the simple position
ccmtrel servo of figure 1 and equation (5)). -

(2) A feedback switching circuit comprised of:
(a) I?our discrete values of proportional feedback y=

(two positive and two negative as shown in fig. 2)
(b) Four discrete values of derivative feedback 2DB=

(two positive and two negative as shown in fig. 2)
(c) A switching logic which at any instant determines

the particular combination of derivative and propor-
tional feedback 2DP~,7n employed.

SWITCHING LOGIC

In this section it is shown that digital-computer techniques
can be utilized to establish the switching logic for the feed-
back switching circuit mentioned in the previous section.

Recall that the parameters f?m and ~. have been defied
as functions; that is,

Bm=–# w (y’e)-@ sgn (y’;’)
1

m=0,1,2,3

}

(13)
7.=—12’ W (ye)-2-r Sgn @e’)

n=0,1,2,3 J

where the subscript convention has been given by equations
(9). Equations (13) determine the switching logic. Thus,
for example, & is chosen when (y’e)<O and (y’e’)<0 and TO
is chosen when (ye)>O and (ye’)>0, so that the combination

1%0 is chosen when (y’e)<O, (y’e’)<O, (ye)>O, and (ye’)>0.
At this point it appears necessary to form the products
ye, ye’, y’e, and y’e’ and then to find the sign of these prod-
ucts in order to establish the switching logic. I?hysically,
however, the process of multiplication is to be avoided if
possible. That there is a possibility of avoiding multiplica-
tion may be gleaned by realizing that

Sgn (d)=sgn ((z) Sgn (b)

Sinca
ab_a b

m–i-am
Thus equations (13) may be rewritten as

A=-qp (y’)[d9SW (c)+29 Sgn (e’)]

m=0,1,2,3 1

-h=–--w W)L7 asp (e)+fr sgn )e’)]
I

(14)

n= OJ,2,3 J

Again the subscript convention is defined by equations (9).
Thus, utilizing equations (13), for emmple, ~~ is chosen

when
y’>0, e<O, e’<0

or when
y’<0, e>O, e’>0

70 is chosen when
y>O, e>O, e’>0

or when
y<O, e<O, e’<0

so that the combination @3,70) is chosen when

Y>O, Y’<O, e> O,’e’>0
or when

y<O, y’>0, e<O, e’<0

From this example it can be seen that it is not necessary to
fid the signs of products but rather that it is sufEcient to
tid separately the signs of y, y’, e, and e’.

Since the sign of a variable is quantized binary information
of the variable, it is convenient to utilize digital-computer
tec.tiquea to further the switching logic. This maybe dono
as follows:

Let the convention be adopted that y>O be represented
by O (binary zero), y<O be represented by 1 (binary one),
and similarly for y’, e, and et. If the ordered sequence is now
established as

(y, y’, e, e’)

four-digit binary logic may be employed to encode equation
(14). In particular, a binary coded decimal may bo used
(see table l)-

It was mentioned in property (4) of the section “Propm4.ies
of Equation (8)” that not all of the 16 possible 13~,yn
parameter combinations were allowed under their definition.
This was termed an exclusion principle on the allowed coeffi-
cient combinations. One of the advantages of the suggested
binary coding scheme of table 1 is that this ewlusion principle
is built into the code. To understand this, consider the
example’ of the combination L?970given previously. In the
code language 19970is chosen when the binary number 0100
or 1011 occurs. What is implied by this example is that n
binary number and its complement must be identical (i, e.,
0000=1111, 0111=1000) as far as the switching logic is
concerned. Thus out of the 16 possible four-digit binary
numbers only the fit 8 we unique. That is, in counting
from O to 7 in a binary coded decimal, if complements are
included then so are the other 8 possibilities, 8 to 15 (see
table 1).

The allowed pm,~s parameter combinations along with the
encoded logic of table 1 are summarized in matrix form in
table 2. Examples are given to illustrate the meaning of
the table. In general the allowed subscript combinations
axe

m=n=O, 1, 2, 3
or

m #n

m+n=3

REALIZATION COMPLETED

FJOWthat equation (14) has been successfully interpreted
(encoded) in binary-logic form (table 2), the realization of n
feedback switching circuit utilizing this encoded logic is a
typical digital<omputer mvitching-circuit problem. As is
characteristic of any synthesis process there will, in general,
be many ways to design this feedback switching circuit.
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x I Y
p2+2Dp+l O.Jtput

Sensed

$@$$,

voriobles y Y’ e e’

FIQUEE5.—Block diagram showing complete physiosl interpretation
of equation (8). CD, zero-coincidence detectom.

The block diagram of figure 5 shows one design that com-
pletes the physical interpretation of equation (8) along the
lines started in iigures 3 and 4.

In figure 5 the feedback switching circuit consists of:
(1) The four discrete values of both derivative and propor-

tional feedback 2D&,7%
(2) A relay switching circuit that connects the proper

feedback combination
(3) Zero-coincidence detectors CD that drive the banks of

relays to one position or the other depending upon the signs
of the sensed variables

It should be noted that, depending upon the applicauon,
other forms of sign-sensing devices and other switching de-
vices such as diodes, transistors, electronic switches, rind/or
magnetic amplifiers could be employed to obtain other rwd.i-
zations of equation (8). Jn any case the following properties
rumbasic to any realization:

(1) The signs of the four variables y, y’, e, and e’ are
sensed. This may be thought of as the process of ‘leading
in’) the four-digit binary logic of table 1.

(2) On the basis of the 24 possible binary decisions the re-
quired feedback combina~iona 2D&yn as defined in table 2
are connected around a linenr second+rder “member.

It is important to stress that the only types of nonlinear
operations required in the realization of this nonlinear con-
trol system are switching-type operations. In addition, all
the switching is to be performed in feedback paths, which
means that the switching can be done at low electronic
power levels. These practical features are definite design
advantages. Thus, in summary, it can be said that this
type of nonlinear control system is not only physically
realizable but also practical from an instrumentation stand-
point.

EXPERIMENTAL VERIFICATION OF NONLINEAR CONTROL
THEORY

DISCUSSION OF SIMULATION TECHNIQUE9

Simulation techniques were chosen as am experimental
mode of investigation of performance of the nonlinear con-

trol system realized from equation (8). These techniques
off er the following advant~ces:

(1) Proximity to the actual control system. This means
that the same practical features with regard to i.nstrument,a-
tion (see the section entitled ‘[Realization Completed”) are
exploited to fullest advantage. Thus, just as in the actual
system, the only nonlineax device required for the simulated
model is a binary logic feedback switching circuit (see ap-
pendix C for details). The linear portion of Me system is
simulated on an analog computer. Here the only operations
required are summations, two integrations, and one dif-
ferentiation. These are all operations which an analog
computer does well. It can be said then that the accuracy
to which the simulated model simulates equation (8) de-
pends primarily upon the realized feedback switching cir-
cuit. The most essential type of imperfection to be m-
pected in this switchkg circuit & time delay in switching.
Exactly the same type of imperfection will be met in the
physical control system. Thus there will be more nearly a
one-to+ne correspondence between the simulated model and
the actual system than betwe~ either and equation (8).

(2) Convenience in experimental investigation. In order
to characterize the output y of the nonlinear sy&em com-
pletely, a set of five parameters

- -&<. “ (D, A A lY, r-r)

&d the_ input x must be speciiied. ID the performance
evaluation of the system it is necessary to be able to vary
these characterizing quantities conveniently. Simulation
techniques allow this.

PRESENTATION OF EXPERIMENTAL RESULTS

Figurw’6 to 17 present eiq?erimental results obtained from
the simulation studies of equation (8). Briefly, the results
are presented as follows:

Figures 6 to i2 compare the responses (output y and error e)
of the nonlinear system with that of a linear system for
various Chwes of inputs z. (In comparing the linear and
nonlinear responses it will be noted that there is not exact
synchronism of events because, with the available experi-
mental facilities, it was necessary to obtain the two responses
sepmately.) The linear system utilized is that which con-
stitutes the feedforward member of the nonlinear system
corresponding to the case where 13m=Ym=O. The nonlinem
system for figures 6 to 15 is

pp–p,pz

A=–B1=O.5

y3= —7.=2

Figure 6 compares the system responses to sinusoidal
inputs and figure 7 shows the responses to triaguhr-wave
inputs. A partially integrated square wave x(r) is defied
as the output of a iirst-order hear system characterized by
the transfer function H(p) = l/(ap+l), when the input
31(7) is a square wave. The responses of linear and non-
linear systams to this type of input are given in figure 8.
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/’”
:2-0”,

1
(s) N-onlineQrsystem; fl=fJ/M,=O.l to 0.4 in 0.1 steps

(b) Line-r system; i2=~u,=0.1 to 0.4 in 0.1 steps.
(c) Nonlin@r system; Q=a/Q,=O.5 to 0.8 in 0.1 steps.

(d) Linearsystem; Q=m/u,=O.5 to 0.8 in 0.1 steps.
(e) Nonlinearsystem; $2=u/u,= 1.0 to 2.0 in 0.2 steps.

(f) Linesr system; fl=u/w,= 1.0 to 2.0 in 0.2 steps.
FKIUFLE6 .—Linear and nonlinemsystemresponsesfor 20-volt peak-bpeak sinusoidalinputswith frequenoyQvaried. D=O.6; 2.5 muall divisions

on time stole= 1 normalizedtbne unit; tick msrks at bottom of figuresindicrte when frequency was vskkd.
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/

/

20V

(a) Nonlinearsystem; fl=2T/T=O.l to 0.4 in 0.1 steps.

\ / 7= CLlvt

(b Linearsystem; il=2~!i!’=0.l to 0.4 in 0.1 ste~.
k(c) onlinearsystem; n=2 T=O.5 “to0.8 in 0.1 steps

$(d) Linear system; Q=% =0.5 to 0.8 in 0.1 steps.
(e) Nonlinearsystem; Q= T-1.0 to 2.0 in 0.2 steps.

‘$(f) Lin~r system; fl=2~ =1.0 to 2.0 in 0.2 steps.

FIGURE7.—L&ar and nonlinearsystemresponseato20-volt peak-to-peaktriangular-waveinputswithperiod Tvaried. D=O.6; 2.5 small
on time scale= 1 normalized time tit; tiok markaat bottom of figuresindicate when periods merevaried.

G213U074&92

divssfons
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(a) Nonlinear system; .=4 and 2. Tick mark at bottom of figure indicat~ when a was varied.
(b) Linear system; .=4 and 2. Tick mark at bottom of figure indicateawhen a waa varied.

(o) Nonlinearsystem; .=1 and 0.5. Tick mark at bottom of figure indioatcs when a was varie&
(d) Linear system; a= 1 and 0.5. Tiok mark at bottom of figureindioak when . was varied.

(e) Nonlinearand linearsystems; a=O. Tiok mark at bottom of ilgure indicates demarcationbetween nonlinearand linear systems.
FmumJ8.—Linear and nonlinearsystem responsesto 20-volt peak-~peak rtiilly integrated square-waveinput. D=O.6; 2.5 small divisions

on time soale=l normri%ed time unit.

The responses of the systems to small sinusoidal inputs are
given in figure 9. Figure 10 gives the rmponses to clipped
sinusoidal inputs. Figure 11 shows the response of the
nonlinear system to sinusoidal inputs that have been dis-
placed with a direct-cument component. Figure 12 shows
the responses of linear and nonlinesr systems to a triangular-
wave input whose periods and amplitudes are randomly
modulated.

Figures 13 to 15 deal with the effects of imperfections that
are likely to be encountered in the actual control system.
Figure 13(a) gives the results and data of an experhmmtrd
investigation on the effects of switching delays due to

threshold in sensing the sign of the error, sgn (e) for a tri-
angular-wave input. The experimental results for a con-
stant 9-volt input (see fig. 13(b)) are giv6n below:

Tlmshold, w----------_-------------- 14 26 36 44
Pwlc-bpeak error, rev------------------ 44 124 ‘ 220 200

Figure 14 shows the effects of placing progressively smaller
limits on the acceleration of the nonlinear control system.
For each value of y“ limit considered, the output, output
derivative, output acceleration, and instantaneous error
gre shown. The effects of a velocity limit on performance
of the nonlinear and linear systems are compared in figure 16.
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. ‘. (a) Nonlinearsystem; Q=a/-,=O.l ta 0.4 in 0.1 steps.
(b) Linear system; $2=~ti,=0.1 to 0.4 in 0.1 skpa

(o) Nonlinearsystem. Q=w/u,=O.5 to 0.8 in 0.1 steps.
(d) Linear system; ~=w/~ =0.5 to 0.8 in o.1 ~te

(e) Nordinear system;Q=wfx=l.O to 2.0 in 0.2 st%pw
(f) LiU@3rsystem; Q=cO/ti,=l.O to 2.0 in 0.2 steps.

FIGUIiE O.—Linearand nonlinearsystem responsesto 4-volt eak-to-peaksinusoidalinputs with frequeno ~ varied. D=O.6; 2.5”SIIMIIdivision
1! ?on time scale= 1 normalizedtime unit; tio marks at bottom of figuresindioate when requency was varied.

I
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.

&B- ‘=% ./t5-
20 v \“ ./” 1 T = W“t

(a) Nonlinearsystem; fZ=E~u,=O.1to 0.4 in 0.1 steps.
(b) Linear system; Cl=u/~.=0.l to 0.4 in 0.1 ete s.

2(c) Nordinearsystem; fl=u/m,=O.5 to 0.8 in 0.1 eps.
(d) Linear system; fl=~u,=O.5 to 0.8 in 0.1 steps.

(e) Nonhsar system- Q=u/u,=l.O to 2.0 in 0.2 steps.
(f) Linearsystem; fi=~a,=l.O to 2.0 in 0.2 steps.

J?muRE10.—Lmearand nonlinearsystem r
?“

onsesto 20-volt peak-~peak sinusoidalinputs with frequency Qvaried that are clipped s remetri-
cally at &6 volta D=O.6; 2.5 smalldi aona on time ecsle=l normalizedtiie unit; tiok marksat bottom of figuresindicatewhen requency?
was varied.
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‘~
)(n Q= u/m=O. 1 to 0.4 in 0.1 steps.

(b fl=u/a,=O.5 to 0.8 in 0.1 steps.
I?IQURD 1l.—Nonlinear system ref$ponsesof 20-volt peak-topeak

sinusoidalinput with frequency Qvaried that hm been displacedby
—10 volts (direc&current component) for obtaining osculation.
D= 0,6; 2,5 small divisions on thne scale= 1 normalized time unit;
tick marksat bottom of figuresindicate when frequency was varied.

I?igure 16 presents the responses of some special cases
of tb e nonlinear system (special with respect to the choice
of tho pm ancl Yn parameter values). In th @ure the
system responses to a triangular-wave input are given for
four different parameter sets. The parameters pertinent
to these results are listed in table 3 for easy referenca.

Figure 17 gives the response of the nordinear system pos-
sessing a low linear damping factor 11=0.1.. The responses
fire for n triangular-wave input whose frequency was varied
in the same manner as that of figures 7(a) and 7(c).

Detailed cliscussions of these results are given in the
section entitled “Discussion of Results.”

DISCUSSION OF RESULTS

PERFORMANCE EVALUATION OF SINUSOIDAL INPUTS -

To complete the synthesis of the nonlinear control system
that has been derived from equation (8), it is necesmxy to
choose the magnitudes of the parameters that characterize
the system, that is, (D,@, @,lY,fi) or (D,iM3j,Y3,7J. It is
expected that the performance of the system depends on

(a) Nordinear system. ‘ , (b) Linear system.
FIGURE 12.—Linear and nonlinear system rmponsea for triangulo

wave input whose ~enod and amplitude are randomly modulated.
D=O.6; 1small dimaionon time-scrde=l normalized tune unit.

~u~(b)
(a) Nonlinear s stem response to triangulm-wave in ut with period

zvaried as in gure 7 (a). ED= 0.6; tick marks at ottom of figure
indioate when period was varied. Threshold in sensing sgn e was
44 millivolts.

(b) Constant input z(.) was 9 volts.
FIGURE 13.—Effects of switching delays due to threshold in sensing

sgn e.
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(a) Nonlinear,system; no ~“ limit.
(b) Nordinearsystem; jz 12-volt ~“ limit.
(c) Nordinearsystem; ~9-volt ~“ limit.
(d) Nonlinearsystem; ~ 7kvolt II” limit.
(e) Nonlinearsystem; &O-voltV“ limit.
(f) Nonlinear system; *.4}-volt y“ limit.

FIGURE 14.—Nonlinearsystem respons= to 20-volt peak-tqmak sinusoidal input with varying acceleration limits. D= 0.6; Q= w/w=0.6;
2.5 small divisionson tiie scale= 1 normalizedthne unit.

the choice of these parametem. For studying their in-
fluence, simulation techniques proved to be very convenient.
Experimental results were given in figures 6 to 12 where
the response (output y and error e) of the nonlinear system
was compared with the response of a linear system for a
variety of inputs. This gives the possibfity of establishing
the properties of the nonlinear system not only by itself but
rdso with respect to a linear standard. The linear system
employed for this purpose was that which constitutes the
feedforward member of tlmnonlinear system (i.e., 9.=7,=0).

These experiments allow parameter values for good pcw-
formance of the nonlinear system to be found. AnaJyticnl
and practical considerations that aid in the optimization nro
treated later in the section entitled ‘~Choice of I?aramotor
values.”

The sinusoidal responses of the nonlinear and linear systems
are compared in figure 6. Here, the frequency mngo con-
sidered was 0.1 S f.l=Q/u,s 2. The peak-to-peak input ampli-
tude was 20 volts. , These results show that the nonlinear
system reproduced the sinusoidal inputs up to the frequency
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(a) Nonlinw system..
(b) Linearsystem.

F1auwa16.—Lincar and nonlinearsystem responsestm20-volt peak-to-peak sinusoidal input with ~ 4kvolt velocity limit. D=O.6; fk2r/T=
0.5; 2.5 small di-ions on time scale= 1 normalized time unit.

Q= 1.4 with virtually no instantaneous error when com-
pared with that of the linear system. For higher frequencies
the error for the nonlinear system increased rapidly to the

/ same order of magnitude as that of the linear system.
Substantially the same comparative performance was

displayed by the two systems when the input was a smaller
(4-volt peak-to-peak) sinusoid as is shown in figure 9.

Figure 11 gives the response of the nonlinear system to a
20-volt peak-to-peak osculating sinusoid over the frequency
range O.l Sfls O.8. This is a severe type of input for the
nonlinear system since both z and x’ sinmh%meously go to
zero. This implies that y and y’ are also small so that in
equation (8) the discontinuous-variations of the parameters
i%,~~ c~ot be so effective in determiningg the acceleration
y“, since

y“=z-[2D(l+AJY’+ (l+7JYl (15)

From the figures it is seen that the nonlinear system did have
some difficulties near the osculating regions; further, the
peak error incrensed as the frequency was increased (see
appendix D). & might be expected from equation (15)
this error for small values of y and y’ can be reduced by
increasing the magnitudes of the parameters (this will be
discussed in more detail in the section entitled “Choice of
Parameters”). At any rate, by comparison, the error for
the present system is always less than that of the linear
system of i@re 6. (In the linear reahn, error is independent
of a shift in the direct-current level of the input.)

Taken collectively, the 20-volt, the 4-volt, and the oscu-
lating 20-volt sinusoidal inputs tend to form a more realistic
appraisal of the nonlinear system performance, than does a
single input amplitude. There is still much that can be
learned from a detailed study of these three responses, but
first it is desirable to obtain some sort of a quantitative com-
parison between the nonlinear and the linear system per-
formance. One such comparison can be made as follows:

(1) Assume that the input to both systems z(~) is, and
has been for a long time, a 4-volt peak-to-peak sinusoid of
frequency

Q=@Op=o.l

so ~hat as far as the linear system is
s teady-st ate rilterndng-current input.

concerned this is a

(2) Determine how much the band width or the natuml
frequency u, of the linear system must be increased in order
that the time average of the magnitude of the instantaneous
error

for the linear system be reduced to that value given by the
nonlinear system.

Here it is easy to show that for the low-frequency steady-
state alternating-current case

(16)

For an input Z= lxlm~ ‘Q’ the steady-state error is given by

For small values of $1this equation yields

e= [Zl=[l—(1—iQ2D+ . . . )]efQr

= lzlm(iQ2D)e~*T
or

Ielm =2DQIZI=
but

-.
therefore

(17)

For the given system and input

fi,*n=o.15

For the nonlinear system and the same input (approximate
calculation from the much larger and clearer original of
fig. 9 (a))

Now from equation (17), since $2=a/u,, it is seen that in
order to reduce ~li~ by this factor of 15, u. must be in-
creased by the same factor.
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FIGURE 16.—Response. of nonlinearsystem with four different para-
meter sets. to a 20-volt peak-bpeak triangular-wave input with
fixed period T= 10T. D=O.6; 2.5 small divisions on time scale=
1 normalized time unit; tiok marks at bottom of figures indicate
demarcationbetween systems. For systems’ numberingsee table 3

(a) Complete system 1 and system with no derivative feedbaok 2.
System 1: f?s=—f?O=2; A= —p,=O.5; 7$=—7.=2; 72= –~l=O.fj.
System 2: L93=-60=O; A= —6,=O; m= —vo=2; ~=-71=0,6,

(b) System with no d sensing3 and system with no e sensingin dml-
vative feedback loop and no e’ sensing in proportioned feedbnok
loop 4.
Sntem 3; B3=-190=Z; J42--I91=Z; Y3=— You Z; Y1=— Y1=Z.
System 4: ~= —flo=2; JY2=-f31,=-2; m= —7.=2; -f~= –71=2.

(c) Complete system 5 and system with no derivative feedback 6.
System 5: j?s=-fJo=lO; 61=—191=1; ~S=—~O=lO; ~,=–71=1,
System 6: L?~=-@o=O; BZ=— L?I=O; ~a=—-yo=lO; -y~u-yI=l.

(d) System with no e’ sensing 7 and system with no e sensing in clcri-
vative feedback loop and no e’ sensing in proportional feedbaok
100P 8.
System 7: A= —BO=lO; 19,–-61=10. ~=–70=10; 72=–71=10.
System 8: &=- L?o=lO; ISZ=- pl=–16; m=–yo=lo; yl=–y*= lo.

FIGURH 16.—Contfnued.

in the axarnple of the linear control system of figure 1 and
equation (5) this increase in tipby n factor of 16 would mmn
that the gain K, must be increased by the order of magnitude
of (15)* since

The gain K, must be increased by an order of magnitude of
15 if the value of D shall not change. , Such an increaso in
the loop gains is frequently not at all physically possible.

J(a i2=2ar/T=O.l to 0.4 in 0.1 steps,
(b i2=2z/T=O.5 to 0.8 in 0.1 steps.

FIIXIEE17.—N onlinear system respon~ to 20-volt peak-to-peak
triangular-wave input with period Tvaried. D= 0.1.; &= – ~= 12;
fi=-~1=3; ~=— 70=2; W= —~1=0.5; 2.5 small chvisions on timo
scale= 1 normalized time unit; tick marks at bottom of figures
indicate when period was varied
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Up to this point little attention has been given to the
detailed nature of the nonlineax system response. Closer
inspection of, for example, figures 6 (a) and 6 (c) shows that
the output y is a function that links serpentine fashion
(oscillates) at a very high rate about the input z, but still
the magnitude of the error is qnmll. In fact, it is neces.w-y
to inspect the error at a scale 20 times larger than that of
the output even to notice this phenomenon. Mathemati-
cally this means that the functions z and y approach one
another closely but that their derivatives differ appreciably.
Physically, however, this is not at all undesirable as long as
the magnitude of the error is small. (Actually for mechanical
systems this property would be useful in preventing static
friction.) This fine-grained oscillating character of y is the
very essence of the nonlinear control theory. Every time
the error or error derivative goes through zero the parameter
set p~,y~ of equation (8) changes discretely as defined in
equations (13) or by the binary logic of table 2. The discrete
changes in the parameter cause discontiriuities in the second
derivative y“ , which when integrated twice give y its serpen-
tine character. To illustrate this point, ‘the sketch of @e
18 shows samples of the superposed input and output of the
nonlinear system. The input in this case could be that of
figure 6 (a) or 9 (a).

@

0011-

ooo1-
.54

0000.
0010- 3 Y

0011 ~ 2

*O

a

.-A ..
(a)

,,,
,..
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,/’

.’
,,,

4111 a,

I10

o1oo-

0101
o111-

(ti

r a100
1o1o-

101t

--i001

-1000\--—---
\
‘. (d).

FIGUZD18.—Sketchshowing portions of superposed in ut and output
8of nonlinear system magnified approximately 10 times.

Circle (a) in figure 18 is a typical cycle of the oscillating
character of the output y. Cknnmencing at ~0, the error
changes sign at TO,the binary number 0011 is ‘!read into”
the feedback switching circuit of iigure 5,. and using the
notation of table 2 the parameter combination p~s is switched
into the circuit. This causes an immediate revemal in the
sign of the output acceleration y“, so that at time 71 the
error derivative changes sign, the binary number 0010 is
read in, and the parametex combination &M is switched into
the circuit; acceleration is still in the same direction but
weaker. At time r~ the error again changee sign, the binary
number 0000 occurs, and the combination f?o~ois switched
into the circuit; acceleration is in the opposite direction.
At time ~s the error derivative changes sign, the binary

U20U07-0&93

number 0001 occurs, and B1-ylis switched in; this reduces
the acceleration until at time r, the error again changes
sign, 0011 occurs, /3378is again switched in; the cycle is
complete. Although it- was not mentioned at the time,
figure 2 shows this sequence of 19~,y= combinations. The
nature- of the acceleration resulting from the switching can
be seen in ligure 14 (a).

The comparable switching cycle for y>O and y’<0 as
shown in circle (b) of @ure 18 is:

Logic Parameters
0111 130-r’3
0110 A%
0100 %70
0101 km
0111 130Y3

Similarly, for y<O and y’<0 as shown in circle (c) of figure
18:

Logic Parameters
1100 1%-r’3
1101 B2-Y2
1111 9070
1110 P1’Y1
1100 . 193-Y3

This is the mirror-image switching cycle for circle (a) (see
property (4) in the section ‘Properties of Equation (8)” and
also the discussion in the section “Switching Logic”).

Finally, for y<O and y’>0 as in circle (d) of figure 18:

Logic Parameters
1000 /3073
1001 Am
1011 Bflo
1010 %’1
1000 PO’YJ

This is the mirror-image switching cycle for circle (b).
With this insight into the detailed behavior of the non-

linear system more information can be obtained from the
experimental sinusoidal r~ponses of iigures 6, 9, and 11 that,
have up until now been treated from a macroscopic rather
than microscopic viewpoint. Along these lines, the following
experimentally observed facts are noteworthy:

(1) In comparing the errors for the 4-volt and the 20-volt
peak-to-peak sinusoidal inputs in the frequency range of
good reproduction 0.1s Q= 0.8, it is seen that:

(a) The magnitudes of the errors are nearly the same (see
figs. 6 (a) and 6 (c) and 9 (a) and 9 (c)).

(b) The period of the error is generally smaller in the
larger amplitude case. This is even more pronounced if the
4-volt peak-to-peak case is compared with figure 11 for y
& the region of —20 volts.

(2) Good reproduction is characterized by many e and e’
stitchings (see fig. 18) per cycle of the input. & input
frequency is increased and the upper limit of small error is
reached (fig. 6 (e) and 9 (e)) the e and e’ stitchings become
more infrequent until there are iinally only two of each per
cycle of the input.
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The fact that the period of the error is smaller for larger
inputs can be gleaned horn equation (8) w-hen it is rearranged
as

y“=-[2D(l+f?m)y’+ 7#]+(x–Y)
or roughly

y“ = –[2D(l+&Jz’+.y.z] (18)

For a system with speciiied ffm,y. parameter values, the linger
input and input derivatives will give stronger discontinuities
in y“ as the f?m,~. combinations change. This implies that
9.)7. will change more often mtig the period of th~ error
smaller. See @me 14 (a) for the justification of the approxi-
mations in equation (18) since y, y’, y“, and z are show-n in
this figure. (The input z was sketched in by hand.)

ID the frequency range of good reproduction the reaaon
that the magnitude of the error is virtually independent of
the input amplitude cannot be explained from equation (8)
since this fact is intimately tied in with the imperfections
in the feedback stitching circuit (see section entitled
“Effects of Stitching Imperfections” for details). &
measured from the experimental sinusoidal responses,
[clam is of the order of 15 to 20 millivolts. It might be
noted that earlier in this section the “der 4-volt peak-to-
peak input sinusoid was employed in the comparison when
it was determined that u, should be increased by a factor

of 16 in order to obt.din the same Ie]~ifl. This choice of the
smaller input was decidedly in favor of the linear system
since the linear error increasea linearly with input amplitude.
Thus, if the 20-volt peak-to-peak input vmre used, an
increase in w, by a factor of 5X15=75 would be required

to obtain the snme filia.
The fact that there is a correlation between good repro-

duction (small error) and the existence of many error and
errorderivative stitchings is very importut since it is the
key to understanding the upper limits of good performance
of the nonlinear system. One approximate -way to investi-
gate this matter is to establish a deficiency between the
output acceleration required for good reproduction (many
sw-itchings) and the available output acceleration. Equation
(18) gives an approximation to the output acceleration when
the system is functioning well. As an example of this
approach consider the input z to be a sinusoid of frequency
Q (fig. 6 or 9). Since

jz’’l==wlzlm

it is to be expected that the nonlinear system will have the
greatest difficulty in the vicini~ of lzl.~where, Mln equation
(1s),

Ii’’laaaz= l’Y*l.a

Thus, if in this region the output y is going to interweave
the input x (ns is characteristic of good reproduction), then

l!7’’lma2>l~”l-

This inequality then places an upper limit on good perform-
ance of the system in response to sinusoids

$-l<Jm (19)

, or the system used in obtaining the experimental results of
iigures 6 and 9, 17%1.==2; therefore,

$-l<.@

Inspection of both figures 6 (e) and 9 (e) tends to substtmtit-tto
the above result. For example, in figure 9 (e) it is seen for
Q=l.2 (after the transient caused by turning on the input
has been absorbed) that as the input goes through its maxi-
mbm, frequent e and e’ sw-itchings stop and do not occur
again as the frequency is increased. .

PERFORMANCE EVALUATION OF INPUTS OTHER THAN S~USOIDAL

J-n the preceding section only the sinusoidal response of
the nonlinear control system was discussed in studying
performance. However, it is easy to see that the nonlinenr
system will cope with any input in the some manner as it
does with sinusoids. Thus, as long m the magnitude of
input acceleration does not continuously exceed the swailablo
magnitude of the output acceleration the switching process
will conimence and. excellent reproduction will result. This
type includes inputs with discontinuous derivatives and
discontinuous inputs. The experimental sinusoidal re-
sponses of figures 6, 9, and 11 themselves give some indica-
tion of these facts. For example, in figure 6 (a) there was
an initial discontinuity in the input and there were clis-
continuities in the input derivative when the frequency
was changed. The results in figures 7, 8, 10, rmd 12 prove
further that the nonlinear system response is not dependent
upon any specific type of input. Given in these figures aro
triangular-wave, partially integrated square-wave (iicluding
square-wave), clipped sinusoidal, and random 4 inputs,
respectively.

It should be noted that in the literature (refs. 1 and 3 to 6)
a marginal-type input that would present a case of indecision
to the switching circuit of the nonlinear systim is discussed.
This case ha-s never been encountered experimentally even
w-hen the attempt was to produce this case. Thus, the
marginal-type input is not considered practically important,

USE OF PHMR-PLANE METHODS TO STUDY PERFORMANCE

The phase-plane methods that -were used in the originnl
analytical development of equation (8) (refs. 1 and 3 to 5)
can also be gainfdly employed in studying the performance
of the nonlinear control system derived from equation (8)
once the 13nand 7= parameter values have been specified,
(In this section it is important to distinguish between &
and 7. parameter values, i. e., A=2, A= 1, etc., and @.Yfl
parameter combinations, i. e., &yO, etc.)

~In the strfctstatistkd - the Protabilltytbnt the Inputsshownin flEUIW12 (a) and
f2 (b) em mt mmpks efrendem stationaryUme.smk k admittedlyhlgb knuse of axlstlng
e~~ ~~~ TfI~ Jnrtntiwwo obtafrmiby rnndommnnnalmodubatlon(troth
frqnenIwandamplltude)ofatrlmgnk-wavoInputofpmk-t&fx&amplitudoA andfxrlod
T ukro

0ZAZ20 Tolt9

Randommanuel mwinlatlonmeans that the operatorvericd by hand both tbo frwIuency
ind axnplftndecnntrekof the Inputgeneratoras rnndomlym fxmlble. In tbo prcwnt In.
-tin tie OJDIP=JIVO~~ of tie ~w ond nonlbwnrr=rwses to wbst appmrto
Mband-ffmltedmndom fnpntaem felt to be moreInqmtant thantbooxaotstatlstlmlprop-
rtles ef the Inputs.
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If in equation (8) the error e= (x–y) is assumed small,
then tho output y crm be approximated by portions of
curves that satisfy the autonomous differential equation

(20)

wham D, & and 7S are defined in the section “~ofinem
Control Theory.” Further, if @j/dr=~’, these approxi-
mating curves me defined in the ~’~ phase plane by

(V&-V)%=M@k–-V’)X’ (21)

whore M is a constant depending on initial conditions and

A1,2=—D(l +~.) +@(l +19J2—-Y.

Equation (21)- comes from integration of the fiat-order
differential equation

~_ –2D(1 +L?JT –T.Z
~– @l

ii= —2D(1 +p.) —’y%~ (22)

Sinco the particular&, y. combination employed in each
point of the phase plane depends upon ~, ~’, e, and e’, four
approximating cnrvea go through each point (see appendix
E). The tangents to these curves (eq. (22)) indicate four
directions which lie in an angular sector (see fig. 19). This
rmgular sector is defined by the two e.streme directions which
apply if e and e’ have the same sign. The two inner direction
values apply if e and e’ have opposite signs. By superposing
the input X’Z phase plane on this ~~ plane it can be stated
that at rmy point the tangent to the input phase curve must

Y

2y’

FIGURFJ- 19.—Phase-plane angular seotors defined by equation (22 for
Athe gwen parameter values. uS= 1.5; ZE7=0.5; I-Y- O.45; 3-Y= .06;

2D=0.26; u,=2.

be included within the shaded angular sector (discussed
above) if small error is to be obtained. Thus, equation (22)
can be used to study performance. The width of the angular
sector changes with the ratio ~/~’ for given pmand ~. param-
eter values. It is largest (180°) for ~’1~0 and smallest for
fi=O if (1 +i?~) and y. have the same sign. However, the
width for ~+0 is not significant since all phase curves
(including the input) have infinite slope there. Thus, along
the line ~=0 the curvature of the input phase curve must be
used to determine limits on good performance. The radius
of curvature of the input must be smaller than that of the
flatteat approximating curve.

In order to illustrate the use of these phase-plane methods
in predicting limits of good performance consider the example
of a sinusoidal input x=sin %. In this case the input is
represented by an ellipse in the phase plane and

d(x’)_=_ ~2.;
dz

In the superposed ZC’ and ~~ phase planes of figure 20 are
shown three sinusoidal-input phase curves (i. e., three
diilerent frequencies) and the families of phase trajectories
of equation (22) for the /3=, y% combinations where e and e’
have the same sign. (In order to avoid extensive computa-
tions the parameter values indicated in fig. 20 are those
of an earlier investigation (see ref. 1).) Thus, the tangents to
tw-o intemecting phase curves define the angular sector at that
point, as has been discussed. By tracing the inputs with dif-
ferent values of Q it can be understood that good performance
for the presented system can be obtained only for Q<QO where
Qois the parameter belonging to that ellipse which has the same
radius of curvature as the curve through (~j~) = (1,0).
(Note that the radius of curvature of the approximating
curves jumps at ~=0 and is smaller for ~<0.) In the
fiwt quadrant (i. e., approaching ~= O from ~>0) this
radius of curvature is given by

Pm72=IPlF’.+o=7xT

Since at this point the ellipse radius of curvature i9 02/1.

Q*<Y*T

Therefore, for the fit quadrant

fl<>~ (23)

Here it should be noted that this is the same result as that
obtained in the section entitled ‘Terforrmmce Evaluation of
Sinusoidal Inputs” even though the parameter values are
different. For the system of figure 20, 73=0.5; thus Q<~

Another example is given by the input z=l–e-ar with
o?(z’)/dz=-a. Since the smallest angular sector is at ~=0,
~=2D(1 +p_) determines the limits on performance.
This means that for the system represented in figtme 20 good
cbntrol can be expected for a value of a slightly smaller than
0.75.

A step input is represented by x= l—e-a’ with a+m. The
picture in the phase plane is cc= 1— (l/a)& with a+m. For
very large values of a this is a straight line -which forms a
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Ftx

FIQwrm 20.-Superposed input and output phase planes showing avail-
able angular sectors for sinusoidal inputs.

7
=1.5; ,7=0.45; $=

0.5; ,Y=O.05; 2D=0.25; a,=2; IB]===2; YI”U=0.5; IBI-{.=l :
h’lmf.=o.~

small rmgle with z’ = O. For ti~ the curve degenerates to a
point (z= 1, $’=0). There is no doubt that a perfect follow-up
of a step is not possible because for practical reasons the line
for large values of a does not lie in the allowed angular sector
at any point it is pas-sing through.

Related to the step input is the square-wave input. A por-
tion of the output phase trajectory for a square-wave input
to the system of figure 8 (e) is shown in figure 21. Figure 21
is computed tvith the help of the differential equation

&=_ ?i’1
dy’, 2D(1 +J3&J’~+ (l+TJy–z

This equation is obtained from equation (8) by replacing
o?y/d# byy’l(dy’Jdy). In this example one cannot immediately
use approximating curves for desiggg the output because
the error is too big at the start of the motion. The computed
diagram is in good agreement with the test run shown in
figure 8 (e).

YI

Squore wove

FIGURE21.—Portion of output ptise diagram for square-wave input.
193= -PO=2; 19F-1%=0.5; 73=–70=2; 7,=–71=0.5; D= O.13;
U,= 1.

EFFECTS OF SWIIWEDNG IMPEEFE~ONS

In equation (8) it is assumed that the parameters P. and ~%
change upon exact zero coincidence of any one or more of the
variables y, y’, e, and e’ as defined in equation (13) or by the
logic of table 2. Physical imperfections, however, preclude
this possibility. Thus, in tlm simulated model of equation

(8), exact zero coincidence cannot be detected because 01
threshold effects, and relays are subject to time lag (both
mechanical and electrical), dead zone, and chatt es.

In the present section an attempt is made to evaluate tho
effects that these switching imperfections had on the oxTmi-
mental result in order to obtain some practical design criteria
for specif~g stitching requirements for good performance
in other applications of this method of nonlinear control.

The experimental results of figures 6, 9, and 11 can bo used
to demonstrate that relay imperfections were not important
in the simulated model. Comparison of the sinusoidal re-
sponses in these iigures has show-n that the period of the error
became smaller as the maghitude of the input amplitude was
increased. (This was discussed in the section “Performance
Evaluation of Sinusoidal Inputs.”) From figure 11 (a) in tho
region of ]y[ =20 volts (the largest magnitude considered in all
the experimental studies) the period of the error T, is
measured as

T.=u&uo.2

There are four parameter stitchings per error cycle (see fig,
18). Assuming these to be approximately uniformly spaced,
the minimum time between parameter stitchings is appro.u-
mately T$4. hTow assuming that the relays must bo capable
of closure im at least one-fifth of this time, the masimum
allow-able (real time) stitching delay tti is

a~ = Te/20= 10-2 (24)

In this s“hmlated model u,= 1 radian per second. Thereforo,

As given in table 4, the relays. employed were capable of
closure in 3 milliseconds or lees so that they wore ontimly
adequate for the experimental studies.

(After the investigation reported here in tho main text was
iinished, Dr. H. E. Lindberg performed a number of experi-
ments to study quantitatively the influence of time delays on
the performance of this control system (see appendix A). Ho
investigated the influence of stitching delays in tho indi-
vidual relays and additionally that of a delay in tho output
line of all relays (represented by an analog-computer approxi-
mation of e-@’). The results indicate that for sinusoidal
inputs with frequencies up to 0.8 of the natural frequency of
the undamped linear member a,, for example, the maximum
error can be held -within 5 percent of the maximum value of
the input with relay delays as large as 47/ti, millkmonds.
For a natural frequency of 10 cps this would bo a delay of
0.75 millisecond. After this relay delay is sele,cted, the maxi-
mum error per input cycle is considerably less for lower input
frequencies For instance, at a= O.la, the maximum error
per input cycle would be slightly more than 1 percent. Also,
the average error w-ould be less than this (see fig. 31).)

The ability to disregard the relays in the evaluation of tho
effects of stitching imperfection on performance leaves only
threshold effect in sensing the sign of the variables y, y’, e,
and e’ to be considered. As has been observed and discussed
in the section “Performance Evaluation of Siusoidrd Inputs”
the amplitude of the error for the nonlinear system was rela-
tively independent of the mag@tude of the input (i. e,, w-hen
the system is operatbg in the rapid e to e’ stitching sequence
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so tlmt this is tho minimum-error case). This constancy of
the lower limit on the error magnitude is caused by switch-
ing imperfections and thus threshold in sensing the signs of
varinbles. Site under a notial switching sequence there
are many more e and e’ stitchings than y or y’ switchmgs
and since the error is of an order of magnitude less than the
error derivative, the primary cause of the lower limit on
error is localized as threshold in sensing the sign of the error.
Figure 13 shows the results of an investigation of this
threshold effect. In all system-response figures except
figure 13 the peak-to-peak threshold was approximately 14
millivolts. In figure 13 (a) the peak-to-peak threshold was
44 millivolts so that figures 7 (a) and 13 give a good com-
parison of the effects of these two threshold values.

CHOICEOFPARAM17PER VALUES

The performance of a completely speciiied nonlinear sys-
tem has been dkcussed. The parameter values for this
system, that is,

D=O.6

p3=–po=2

p,=–/3,=o.5

73= —yo=z

-J’j=-’yl=o.5

were initially chosen in the following reamer: D was first

selected to give good linear system performance; then the
smallest values of the Pmand Y* parameters giving good non-
linear system performance were chosen experimentally from
a systematic variation of parameters utilizing the simulated
system. This particular set of ~m and yn parameter values
can thus be denoted as @m,yJmfn since they establish the
lower bound on parameter values for good nonlinear system
performance. The physical signiticmce of (Bm,-rJ~f~is that
loop gains and acceleration requiremds of the linear mem-
ber are minimized since & and YS are feedback gain con-
stants,

l?rom the discussion in the section “Performance Evalua-
tion of Sinusoidal Inputs” centering about equation (18) or
from the phase-plane methods of the preceding section it is
to be e.spected that a general increase in the parameter
values over (j?n,7a)~in will result in improved nordinw sys-
tem performance by increasing the available acceleration of
the system or increasing the an@ar sectors in the phase
plane. Inspection of @ures 16 (a), system 1, and 16 (c),
system 6, shows this to be true. In figure 16 (a) the param-
eter vrdues were @m,7Jmfn as given above, and in figure
16 (c), system 5, they -ivere

“p, =–po=lo

‘ p,=–p,=l

Ts=—’yo=lo

‘y*= -yI=l

On comparing the performance of these two systems it is
noted that the corners of the input triangular wave are re-
produced with less error by the system of figure 16 (c).

Thus far’ then it would seem that there is no upper bound
on the parameter values; that is

@n,’r#)@+ m

Invariably, however, there will be upper bounds on the values
of the parameters because of acceleration limits in the phys-
ical system. F~ure 14 shovrs the effects of placing pro-
gressively smaller acceleration limits on the system. Here
it is seen that for Iy“ ~>0.31y” l~u performance is not ap-
preciably affected but for values less than this good per-
formance is no longer obtained so that acceleration limits
definitely tend to determine @m,YJ_. In general, then,
there will be a vrhole range of values of I& and y=; that is,

(&-f.)-> @m,7m)> @.,-Ya)mia

for which good nordinem system performance results. The
final choice must depend upon the particular application and
can easily be found experimentally.

There are certain special cases of the j3~ and y= parameter
values that lead to simplified feedback switching circuits
and thus lead to nonlinear systems that are simpler to realize.
In table 3 three of these are denoted as case (1) no derivative
feedback, case (2) no e’ sensing, and case (3) no e sensing
in derivative feedback loop and no e~sensing in proportional
feedback loop.

By making inoperative the appropriate rela~ in figure 5

the simplified switching circuits for these cases are easily
obtained. It is desirable then to inspect the performance
of these special cases (in comparison with that of the com-
plete system) to ascertain whether or not as good performance
can be obtained with less complexity. Figure 16 shows the
response of these cases in comparison with that of the com-
plete system. Figures 16 (a) and 16 (b) differ from iigures
16 (c) and 16 (d) in that the general magnitude of the
parwneters was increased in figures 16 (c) and 16 (d).

These results show that case (2) is not +orthy of muoh
consideration since the magnitude of the oscillating error
is large. Cases (1) and (3),. however, should be considered
for certain applications. For example, if it were know-n
that the amplitude distribution of the input was relatively
void near zero, then cme (1) would serve as well as the
case of the complete system. Case (3) shows nearly constant
percentage error so that it could be useful in cases where
accuracy Was not so important M economy in components.

To this point the parameter D has received little attention
mainly because iti value (within limits) is not particularly
important. It has been observed experimentally that D
may be ariywhere in the range. OSD S 1 even for @~,7J~t~
and performance of the nonlinear system is not affeoted.
Inspection of the block diagram of the nonlinear system
(@. 4 or 5) shows that the physical s~cance of the
variation of D for given values of 1%,-y. is that the damping
factor of the linear member and the derivative feedback
around the linear member change simultmmmsly. A case
of more practical importance such as might arise in aero-
dynamic applications of this type of control system is the
variation of D for given values of DA,T*. That is, the
damping factor of the linear member alone varies while the
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feedback values around this member remain unaffected<
Even in this case it has been found that the nonlinear system
performs well. For example, iigure 17 shows the response
of the nonlinear system

D=o.1

&=-p, =12

fj,=-~,=3

73= —-J’0= 12

72y —’yo=o.5

to triangular-wave inputs, v&ile figure 7 shows the response
of the system

“D=O.6
~=–~=z

lk=-l%=o.5

73=—7.1=2

‘y~= —70=0.5

to the same inputs. Comparing these results it is seen that
performance is nearly the same for both systems.

PRELIMINARY EXTENSION TO EIGHER ORDER SYSTEMS

From a practical standpoint, limitations in the appli-
cability of the nonlinear control system described by equation
(8) do not stem from the inabili~ to realize the feedback
stitching circuit but rather horn assuming the linear
member to be of second order. In many cases a more
realistic approach is to consider the linear member to be of
higher order but still predominantly second order. Figure
22 shows the block diagram of a third-order system of this
nature. The linear feedforwvurd member conld be, foi
example, the servo of figure 1 including the effects of arma-
ture inductmce. The same second+rder feedback stitching
circuit was still employed. However, it could not be

I

Sensed I I
I

voriobl~--j y e e’
I I

FIGURE 22.—Block diagraro of third-order nonlinear control system.

(a) Nonlinear system. ~,= –&=2; A= –B, =O.l; ~~= –70=2; Yz=
–7,=–0.5.

(b) Linear system.
FIGURE 23.—~inear and nonlinear third-order system responses to ran-

dom inpuk 2’=0.1; D=O.6; 2.6 small divisions on timo soalo= 1
normalized time unit.

expected that the P.,yn parameter values remain the same,
Figure 23 compares the response of a third-order linear and
nonlinear system. Here it is seen that the nonlinear system
still responded with much less error than the linear system,

On the bask of the comparative performance of these two
systems it seems important to further studies toward control
of general higher order systems using techniques similar to
those developed in this investigation.

CONCLUDING REMARKS

From control equation (8) a second-order nonlinear
control system that tends to maintain small instantaneous
error for relatively arbitrary inputs has been synthesized
using digital+amputer techniques. The only type of
nonlineax operations required in the realization me switching-
type operationa (zero-coincidence detection and pammotor
witching). The stitching requirements are severe from
the aspect of detector sensitivity and stitohing time delay
but not impractical since all the stitching is done in feedback
paths at low pow-er levels and may thus be performod
Jectronieally.

The system demands sensing of error and error rate of
ohange. Since general noise in a system of this type has to
be expected, both error and error rate are smoothed. The
influence of time delay in the relays and of a generil transport
delay on the performance of the system has been investigated
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and diagrams have been developed which allow one to
estimate the maximum error due to imperfections.

It is a diflicult task to compare the performance of a non-
linear system with that of a linear system because no general
criterion for comparison is available. Since for nofiear
systems the law- of superposition does not hold, it is not
adequate to choose the response to a certain input (e. g., the
step input) ns a criterion for performance comparisons. A
number of diflerent inputs therefore have been chosen for
exhibiting the qualities of the nonlinear system.

Experimental results indicate that i%s type of nonlinear
control system performs better than a linear control system
having a normalized frequency 16 times greater. Perform-
ance is evaluated in terms of the average value of the magni-
tude of the instantaneous error for band-limited inputs.
tither, the nonlinear system performance is virtually
independent of variations in the damping factor of the
system.

STANFORDUNIVERSITY,
STANFORD,CAIJF., Oci!olwr18,1967’.



APPENDIX A

INFLUENCE OF TIME DELAYS

By H. E. LINDBHRQ

In the experiments reported in the ma& text of this report,
the relays were carefully selected in order to keep the bad
effects of iinite closure time to a minimum and no really
quantitative study of such closure delays was made at that
time. Later, studies of this particular system were continued
and quantitative information about the ioiluenca of imper-
fections on the performance of the control system is presented
here.

One numerical and two experimental methods of finding
response with relay delays are used. Plots of maximum
error incurred per input cycle are given for sinusoidal inputs
of various frequencies and for various relay delays. Effects
of a transport time delay are also discussed.

Mluence zones and types of delays,—The system de-
scribed by equation (8) can be interpreted as describing
either of the systems shown in iigure 24 if there are no
imperfections to be considered. However, there are cer-
tainly relay imperfections and there may be transport

x

(a)
\
“switchingCunputer

I I

Y

vx (0 m I .
pz+ 2op+ I

(b)

i
‘sWitd”mg CQmwter

Ma Motor-load system.
Simplitkd airframe system

FIGUREM—Block diagrams of two physical systems giving same
dilTerentii equation providing no im~erfdlona exist. m, pofnt
trRIISpOrtdelay iRhltrOdUCOdinti CirCUlti
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delays. Relay imperfections would affect directly t,hoso
parts of the systems that are encircled by dotted lines in
@e 24, that is, only the discontinuous feedback paths.
II no further imperfections are considered, the rwmlts of such
a study apply equally well to both configurations shown in
figure 24 because the switching computer sees the same
linear member in either case. Other studies, how-ever, cm
conceivably be made on these systems where the dHerenco
between the tw-o configurations becomes sign&ant. A
study of transport delays introduced at points m, for inst,anco,
would certainly give diiferent results for figures 24 (a) and
24 (b) because in figure 24 (a) the output y is fed directly
through this point while in figure 24 (b) no such feedback
is present because the equivalent of such a feedback is built
into the differential equation of the mechanism being
controlled (equivalent, i. e., when there are no imperfections).

One of the most serious imperfections to be considered in
the design of a relay servomechanism is the time lag betvmen
the application of a signal to the relay and the actual closing
or opening of the. relay. &sociated very closely with this
imperfection are other phenomena, such M sigmd threshold,
relay dead time (the period of time in w%ich the relay arm
is in contact -with neither terminal), and contact bounco.
The only imperfection studied here is relay time lag, because
in most relays dead time is very small as compared with the
relay lag time. Contact bounce is also a secondary effect
and is better studied in an actual installation. By appro-
priate interpretation, the results of this time-lag study can
be extended to include the effect of signal threshold which is,
of course, a variable time delay.

Rather than inffeasing the natural frequency of the
system being studied until the effect of inherent relay lag
became noticeable, an artificial lag was introduced while
the system ma allowed to operate in a conveniently low
frequency range. TWO techniques were used to provide
the time lag. The ilrst was a direct delay of each relay
signal, effected by providing an additional relay in series with
each original relay and a resistance-capacitance delay circuit
in between (this will be referred to as the electromechanical
simulation). The second method consisted of inserting an
analog-computer approximation of e-~dp in the total output
line of all of the relays. The two methods gave consistmt
resultf3.

Eleotiomeohanioal simulation of time delay.—The arm-
ature of each logic relay in the control system with no
intentional delays was energized by the plate current of n
zero-coincidence detector circuit. In the delayed system,
the plate current is made to flow through an added relay.
This relay energizes an adjustable resistmce-capacitance
time-delay circuit which in turn feeds the armature of the
logic relay. TWO of the four circuits are shown in figure 26.
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~mmE 25.—Schematic diagram of electromechanical switching-delay simulation.

The amount of delay between activation of the zero-coin-
cidence circuit and the closing or opening of the logic relay
WQSmeasured by observing the coincidence pulse and the
logic-relay contact pulse with n long-pemistence oscilloscope
whose beam travemed the scope at a lmown rate and was
triggered by the coincidence pulse. The voltage supply in
the timedelay circuit was adjusted so that the closing and
opening delays were roughly equal. It is estimated that the
accuracy of timedeIay measurement was of the order of 10
percent. Delays of less than 25 milliseconds (t=7 with the
analog-computer wiring used) were ticult to measure by
this method, and, more important, could not be easiIy simu-
lated by this particular circuit because of high contact cur-
rent in the added relay which caused the contacts to weld.

The delayed system was opemted using. sinusoidal inputs
of 20-volt peak-to-peak amplitude at &equencies from 1/10
the natural frequency of the undamped Iinem system to the
full value of the natural frequency. Nondimensional time
delays of r.&=O.05, 0.075,0.100, and 0.160 were used. Enow-
ing that the error caused by these delays should vary linearly
with the applied voltage (see the section “Response to sinus-
oidal inputs” which follovm), runs were dso made at 10-and
40-volt peak-to-pak amplitudes as a check of the self-
consistency of the data.

Analog-computer simulation of time delay.—An analog-
computer nppro.ximaticm of e-@ was wired using a circuit

—.

suggested by Merrill (ref. 6). The circuit is based on the
I’ad6 second+rder approximation of e-@

which is roughly equivalent to the first six terms of the Taylor
expansion of e-’@ about tdp=O:

(Alb)

The circuit is shown in iigure 26. The &mmnt values -were
found by comparing the tianefer functions of the circuit with
the dtied Pad6 polynomial fraction and equating coti-
cienti of pomax of p. The transfer function of the circuit in
a nondimensional form is:

I&_ RJt,O R@,OC, p— .
go_Rlo RI R3R7 R7

;–R RSR6+R4R8G

me!
~ P+ @JwlGJd

where the resistances &me as shown in figure 26.

(M)
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FIGURE26.—Analog-computer circuit for Pad6 second-order approxi-
mation for rtd=.

Comparing this with the l?ad6 approximation written

12tdp~-bP=l—
12+6tdp+tdv

(A3)

6 equations for the 10 reaistom and 2 capacitors can be writ-
ten in terms of the time delay t~. The resulting six degrees
of freedom on the circuit parameters were used to select the
convenient values shown. Figure 27 shows the location of
this delay circuit in the overall simulation of the rilay con-
trol system.

x &+&+]w
-1 I I I

\\_ /-
—A ‘- Swtchiig computer

FIOURE27.—Insertion of time-delay circuit of figure 26 into control-
system analog

Since this method w-as used only as a check on the electro-
mechanical method, the only input studied was a constant
of 10 volts at delays of td=0.025, 0.050,0.075, and O.100second.

Simulation of a, time delay by this method allowed greater
flexibili@ of the location of the time delay. The delay was
inserted as shown in figure 28 to simulate the effect of a
transport time delay in the system. The output for this
configuration was essentially the same as that found for relay
delays. This result vm.s to be expected because the esential
difference between a trwsport delay and relay delay in this
system is that relay delays affect only the feedback terms
which go through the relays while transport delays affect
the input z as well. But for the greab majority of operation,
x chrmges very slovdy as compared with the changes in the
feedback terms and hence, it makes very little difference in
the response whether the input x is delayed.

FOR AERONAUTICS

+A=l--l @’2@+ll-+
1 I I I

/-—’\
\

I ‘m
2L7p

1

\ )

\\ ‘“
\

-- A Switching computer

FIGURE 28.—Ineertion of timtid$a~s circuit for study of transport

The responses of the two configurations become more
nearly identical as the magnitude of the time delay decreases.
If the basic controlled element is a motor load as show-n in
figure 24 (a) and if a transport delay were introduced at
point m, the resultjng output w-ould difFer somewhat more
from a relay-delayed output because then both z and the
direct y path as vmll as the discontinuous relay signals would
be delayed. 1% tests were run with this configuration,

Computational study of relay delay,—Reaponsp of the
system with relay lag was computed using the dtierential
equations directly. To simplify the amount of calculations,
only response to constant inputs were computed. Calcula-
tions were based on approximating the output with a series
of parabolic arcs. This is equivalent to assuming that y“
is constant during each computation interval, a reasonable
assumption except for large time delays. The input studied
was x=10 and calculations were made until the limit cycles

on a plot of E against ~~were approached within the accuracy

of computation. Computations were made such that the
limit cycles were approached horn the inside in some cams
and from tie outside @ others. Limit cycles for various
time delays are shown in figure 29. Computation intervals
were such that two parabolic arcs were used in each quadrant,

The computation details are as follows: With the assump-
tion that the output is a series of parabolic arcs, the equation
for the error during the nth interval between stitch points is:

En=Ea~+Esi’r*+~E=<Rrsz (A4)

where ~m=O at the start of any interval and 17fii, l%f’, and
E%l’ are the initial error, error velocity, and error accolma-
tion, respectively, for the nth interval. Upon differentiating,
the velocity during any interval becomes:’

En’=En,’ +E,imrn (A6)

Eliminating the time ~n between these two equations, the
equation of the phase-plane trajectories becomes:

Equations (A4) and (A5) are used to find E=, and Z&’
at an actual switch point by letting 7.=UJ4 (the delay time)
and using as initial conditions E at E’= O or E’ at E= O
(the conditions at a theoretical switch point). When this
point is found, equation (A6) is used with Eat=Ea, and
Ezi =E=’ and the next theoretical stitch point is computed
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FIGURE29.—Error limit oyclea due to stitohing delaya for a constant
input of x= 10 volts..

by setting either Eti=O or En’=O depending on which type
of switch point is being approached. In all cases the acoel-
emtion E.f” k found horn the differential equation of the
control system, equation (8). For the special case where
z= 10, equation (8) can be rewritten using y=E+z as: ,

EH+2D(1+PJE’+ (1-i-y.) E=-ltim (A7)

An effort was made to determine some general method for
predicting the limit cycles as an analytic function of t~, D,
%, and Y. but, even with this very simple input, the
limit cycles are approached in such a complicated way that
finding such a function would be a formidable task at best.
However, a systematic series of calculations as shown here
could be made and charts plotted to indicate the effect of
these various parameters.

Comparison, of the three methods for constant inputs.—
For n constant input of x=10 a good comparison of results
from the three methods of studying relay delay was made by
constructing a logarithmic plot of error versus time delay.
Data from the two experimental methods had to be modified
stightly to m-count for actual relays delays and thresholds
of zero coincidence. The modification consisted of measur-
ing the system error with no intentional delay, finding the
delny required to produce this error from the calculated plot
of error versus delay, and adtig this delay to each of the
experimental points. (The effective unintentional relay
delay was found to be 20 milliseconds. This is considerably

greater than the 3-millisecond
manufacturer. The additional

1449

delay speeilied by the relay
effective delay is due to the

inherent thresholds b the stitching circuit which oan be
considered as a variable time delay. Also, the actual delay
of the relays may have exceeded 3 milliseconds.)

After this fiodiiication, the analog-computer data were
indistinguishable horn the calculated data. Data from the
electromechanical method also agreed quite well but diilered
from the computed results by a-s much as 10 percent at a
time delay of 0.12. (See fig. 30.)

Response to sinusoidal inputs,-As mentioned before, the
error resulting from relay lags varies linearly with the magni-
tude of the input z. That this is true is easily seen by examin-
ing equation (8). If z is replaced by & and y by Ky where ~
is a constant, the diflxential equation remains unchanged
and the error e=x-y is now e*= Kic-Ky=Ke.

The reader should be warned that although this ~ a well
known property of linear differential equations, this system
remains essentially nonlinear. Using the definitions of
~mand y. given in the text following it, equation (8) can be
written:

y“+2D(sgn Y’–lp w e–y s88 e’)ltil+

(9 V–17 w e–2~ w e’)ld=~ (As)

With the equation ‘ti this form, the reader can easily verify
that if VI and V2are solutions to equation (A8) in its homoge-
neous form (z= O) then yl +Yz is not necesmily a solution

Time delay, td

I?mrnm 30.—Comparison of methods of svritahing-delay study tith a
constant input of z= 10 volts

. ..
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FIGURE 31.—Ikp0nses for inputs of various frequencies with relay delays of aJJ= 0.10.

because of the nonlinear character of the absolute value and
signum functions.

However, it can be concluded horn the linear proper@
that if the error encountered for any constant input is
obtained, the error for any other constant input can be found
by a simple scale change. For very low- frequency sinusoidal
inputs where z’ and x“ are relatively small it was found that
the error was governed almqst entirely by thiE consideration.
This is demonstrated by figure 31 (a) for a 40-volt peak-to-
peak input with ti=O.lu, and a delay of A= O.1OO. IVotice
that the envelope of the error is very nearly a sine wave with
its peak value occurring at the peak vslue of the input.

As the input frequency is increased, the point of greatest
mror shifts away from the peak of the input. In figure 31 (b)
for u=o.4w, the greatest error occurs ahnost % cycle after
the input reaches its peak in either direction. This is because
the (1 +&Jy’ term becomes sizable in this frequency range
during the acceleration period (i. e., as ]z’I incrwwes) and
reaches a maximum at }f cycle past the input peak. This

large feedback term is applied in an undesired direction for
0.10 unit of nondimensional time and cmmea the large lag
error.

At still higher frequencies the y“ term coupled with the
(l+YJY term both rmch their masimum at the peak value
of the input and the greatest error again occurs near this
time. An example of this is given in figure 31 (d) for an
input frequency of u= 1.Ow,. For intermediate frequencies
the peak shifts around depending on initial conditions as
shown for 0=0.6a, in figure 31 (c).

From an overall standpoint a plot of the greatest error
versus frequency showed an approximately linear increaso
of error with frequincy (see fig. 32). Similarly, a plot of
greatest error versus time delay is linear up to about
d~=O.10 for i%equenci- up to w= O.8W, (see fig, 33). An
interesting compariqn of these results and the results found
for the system with no intentional delays is shown in figure
34. Also plotted in this figure is the maximum error for the
linear system alone (y’’+2D#+y=x).
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FIGURE32.—Maximum error occurring during each input cycle plotted
againet input frequency with stitching delay as a pmameter.

()c=1O sin d=10 sin ~ r volts; dt=—90=2;

62= –f%=o.s; 73= –7s=2;

‘Yz=-’Y1=0.5; ~=0.6; cu,=l.o.

Speoifioation of time-delay tolerances.-If an actual sys-
tem were to be set up such as that described by equation (8),
figure 32 would provide an indication to the designer of how
to specify relaydelay tolermc@s. Take, for example, a
system which has an undamped natural frequency ~,= 10 cps.
If the error of this system is to remaia below 5 percent of the
maximum value of the input for frequencies up to co= 0.8u,,
then the relay dela~ must be held below 0.75 millisecond.
This result is found by first finding that value of @~ on bhe
w= O.8U, curve of figure 33 at which the mtium error is
5 percent. This value of wfd is 0.047. The actual time delay
td is:

~d=o.047 0.047 0.047
—=—=X=0.00075 sec

27rj,
(A9)

u,

This value of time delay will not necessarily assure that
the error will alwaW remain within 5 percent of the input

for other types of inputs which are band-limited to O.Sup
because of the nordinetw nature of the system. However,
it is known from the special type of inputs studied that if
the error is to be as specfied the time delay can be at most
0.75 milhsecond.

For sinusoidal inputs with v<O.8U, the maximum error
will be less than 5 percent of the maximum value of the.
input. For example, at CO=O.lU, the masimum error will
be slightly more than 1 percent.
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FIGURE 33.—MexiInum error occurring during each input cycle plotted
against m%chin delay with input frequency as a parameter (same

5data as for fig. 3 ).
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APPENDIX B

COMPARISON OF EQUATION (8) AND NONLINEAR CONTROL

COMPARISON OF NOTATIONS

In original notation the nonlinear control
given as (refs. 1 and 3 to 5)

where

2/0(4

vi(t)

~+d~o ~!z’+yo=yf(t)
dt’ + dt

output

input

Frequency, C&

34—Maximum error plotted against input frequenoy for
several time delays and for linear member only.

EQUATION OF REFERENCES 1 AND 3 TO 5

I [b=b+ 1+$ sgn (?Jo’E)+A# SgIl (y@’E’)
equation was 1

(m)

c=c+~+~ sgn (y@T)+* sgn (y@’)]

E= (’ye-y*)

( )’=(Z( )/dt

Abl,AbS,Acl,A-s constants, Abl>Ab2,Acl>A~

~+,b+,c+ constants
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In terms of the notation of equation (8) the above equation
is written

(B2)a+#b+(l +1%) g+c+(l+%)y=z(t)

where

@m=–#W (y’e)-@W @’e’); m=O, 1,2,3
7.= —179 (ye) -aysgn @e’); n=O, 1, 2, 3
e= (z—y)
1f9,213,17,27 com~tants, #>9~, 17>27
f.z+,b+,c+ constanta
The subscript convention is

A=IB+4 %=17+27

l%=d-ti ‘Y2=l’Y-fl

p,=–~

/90=-/33

Evidently, the correlation
is then

71=—?’2

?’0=-7’3

between equations

Y=YO

x=y*

(B1) and (B2)

In either nohtion a set of seven
needed to characterize the system.

ig=-E

and a+, &, and c+ are the same.

APPENDIX c

SIMULATION OF SECOND-ORDER

kconstant) paramotma is
or example, in equation

(IM) tie set (a+, b+,C+,@,2&~Y,27) is sufficient. - ‘ -

NORMALIZATIONOFNONLTNEARCONIYIO~EQUATION

When considering control systems it is possible to rocluco
the number of parametm necessary to specify the nonlinear
system. To do this a form of normalization familiar to
linear theory is utilized. First, it should be realized that if
error is to be defied as” e= (z—y) then c+= 1. Thus,
assuming c+= 1 equation (B2) may be written

1
(+7

g=b+
w,

Introducing normalized time r= UJ, equation
come9

(B;)

(B3) be-

EQU’IPMENT

Experimental studies were carried out with the following
equipment:

(1) General equipment:
(a) Analog comRuter, Beckman Ease
(b) Low-frequency function generator, hp 202 A

(input device)
(c) Pen recorder, Sanborn Twin-Viso (output

device)
(d) Vacuum-tube voltmeter, RCA WV-97A
(e) Oscilloscope, Dnmont 304-A

(2) Special equipment:
(a) Binary-logic stitching circuit employed in

conjunction with (a), described in detail in
section %nary-lkgic Relay Stitching
&~t.,)

COMPUTER Smul?

The computer diagram for the d.iflerential equation

$I+2D(1+I%Jg+(l+%)Y=L+) (cl)

is given in figure 35. The correspondence between this sim-
&ded system and the block diagram of figure 4 or 5 is

‘y (1+y.)y=z(~)d%+ 2D(1+/9m) #-
G

(B4)

Thus, knowing the natural frequency of the undamped
linear system, u,, the number of parametem necessary to
specify performance in the nonlinear cage is five, that is,

@, lf! 219,1?’, 27)
or alternatively

NONLINEAR

(~, B3, fh, 73, 72)

CONTROL SYSTEM

straightforward (see ref. 7). Operational amplifiers 1 to 0
are used in simulating the linear member of the physical
nonlinear system. Resistor R1 provides adjustment of the
linear damping factor D. The “input to this simulated linear
member is z– (2DP.y’+7W) where x is obtained from the
input device, while the values of feedback 2Dp.~’ and Y.V
are obtained with resistors I& through Rg (see table 5)
connected to y’ and y through a binary-logic relay switch-
ing circuit derived in the following section. Amplfiers 7
to 10 are sign changers. The four variables ~, y’, e, and e’
-whose signs are to be sensed are made available m shown in
the lower right of figure 35.

SINARY-LOGICBELAY SWITCEING CIROUIT

To complete the simulation of equation (8) it is neces-
sary to .implament the binary logic of table 2. Figure 6
show-s a relay switching circuit (designed on an ‘tand/or”
basis) that realizes the necessary logic.

In order to preclude the possibility of time delay in switch-
ing, “fast” relays have been employed. The average prop-
erties of the 14 double-pole single-throw relays comprising
the switching circuit are giyen in table 4.

The necessary synchronism in relays connected by dashed
lines (&g. 5) is obtained by series connection of field coils.

.
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Into the four channels of field coils th~ formed is read the
four-digit binary logic of table 2 where now

,
0 =Function>O=hTo coil current

1=Function<O = Coil current

This procem of reading in the binary logic may be done by
monitoring the variable (y, v’, e, e’) with four separate zero-
coincidence detectors or amplitude selectors (denoted (7D
in fig. 6 and described @ detail in the following section).
The output of these coincidence detectors then drives the
respective channels of relay coils.

SENSITNE TRANSU3TOEIZED ZEEO-CO~UDENCE DRTECTOR

One of the four identical amplitude selectors designed for
use with the switching circuit of&n-e 5 is shown in iigure 36.
This circuit basically consists of a grounded emitter PNP
transistor stage T1 driving a pentode pulse ampliiier Tj.
(H should be possible to utilize a transistor in place of the
pentode if desired.) Four relay coils connected in series
form the plate load of T,. Positive feedback R3 has been
incorporated for regenerative stitching.

-765 v B+ (2[0 v reguloted)
Q

4.7 meg Q

potentiometer

.Fi2H
v T3 (1N36)

b 250-Q

LY_f47K
L

= T~ (6AH6)

potentiometer

-1-—

FIGURE 36.—Traneistorized zero-coincidence detector.

The operation of this circuit is m follows: When the input
voltage V becomes more negative than — 50 millivolts,
current starts to flow in the base-emitter region of T1.
This initiates collector-emitter current which effectively
grounds the collector and thus the grid of T~. Plate cur
rent flows in T.jso that the relays which form this plate load
are switched to the up position (fig. 5). Positive feedback
R~ has been incorporated to make the stitching regenera-
tive. Stag& Tr and T, will continue to conduct until V
goes positive by 50 millivolts, at which time current is cut
off in TI and thus Tq; the relays return to the normally
closed pOSitiODS(down in fig. 5). —

Refinements that have been included in this circuit are:

(1) Adjustable positive feedback R,. This feedback gives
control over the zero-sensing threshold of the detector. The
greater the positive feedback the greater the threshold.
This adjustment is desirable for studying the effects of
thrmhold in sensing discussed in the section “Effects of
Switching Imperfections.” The measured peak-to-peak
threshold valuea obtainable with this arrangement were a
masimum of 400 millivolts and a minimum of 60 millivolts.
@ the computer setup it was necessary to amplify error e
that fomned the input to one of these detectors five times in
order to bring the stitching threshold down to 15 millivolts,
peak to peak)

(2) Adjustable bias for emitter of T,. This is necessmy to
compe te for the alight positive bias (approximately

?equal to 1 0 millivolts) given to the base of TI by the positive
feedback I&.

(3) A clamping or clipping diode T, to protect the transis-
tor TI from recessive base-emitter inverse voltages. Thus
it can be seen that the input impedwce of this coincidence
detector is 15 kilobms since the base of T, is effectively always
grounded.
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APPENDIX D

BEHAVIOR OF OUTPUT IF INPUT AND INPUT DERIVATIVE ARE SIMULTANEOUSLY SMALL

&sume that the input is a curve -which may be approxi-
mated by

Z=a?

for vahm T<& Since z’=2tYT, both input and input
derivative vanish with T4. The input phase curve is

The output depends on the initial conditions:

(1) For y(0)=O and y’(0)=0

(2) I’or y(0)=O and y’(0)=~

y= +--D(l+l%J7+ . . .]

(3) For Y(O)=% and y’(0)=0

Y=’’rl+(*)++o -‘1

In allcases reproduction of the input is not perfect very
close to ~=O; however, in casea (2) and (3) switch points
may occur for rather small values of r. In case (1) no
switch point close to r= O can be expected. This case will
rarely occur; in most cases neither v(O) nor y’(0) will be
zero. Then the output is a superposition of casea (2) and
(3). In this event the error e=z–y is given by

--’’-’’”+[”+C’D’’+’J-E’(*)+ ~ o 1“
It is evident that for small valuea of q and q the error grows
with a. This can easily be seen in the results of figure 11.
The input was z=A.(1-sin %); that means, near x=O, the
input may be approximated by a parabola with a= 1/2 (fP)A
or the errors near x= O grow with $22.

APPENDIX E

APPROXIMATING CURVES

The approximating curves which can be used ti trace the
output for a given input form a network in the phase plane.
It has proved practical to present the network for e and e’
with the same sign in one sheet (e. g., see fig. 20) and tie
network for e and e’ with opposite signs on another sheet.
Superposition of both sheets alloww establishing of the
four approximating curves through each point of the phase
plane.

The approximating phase curves are det tied by
equation (21). Since the v~ues XI and X2 change from
quadrant to quadrant the curves are composed of portions
of difhent analytical curves w%.ich are patched at y’=0
and y=O.

The roots Xl and & depend on D, /3., and T*; they may
be complex or real. II the rooi% are complex, the approxi-
mating curves are curves of the spiral type which wind
around the Ori=ti of the phase plane. - In the case of real
roots the curves have a quite different character. This
can easily be understood by transforming the equation of
the approximating curves (see refs. 1 and 3 to 5 and ch. V
of ref. 8). For real roots the new coordinates ~ and v are
introduced : gl,—~=p

vA2—y=v

Then equation (21) yields

$l=~’il

If & and X, are real and of opposite sign, the curves in the
PV plane have a hyperbolic character with (y,v) = (0,0) m
saddle point (see fig. 37 (a)). If Al and X2 are of equsd
sign, the curves have a nodal point (see figs. 37 (b) and

‘ 37 (c)). In figures 38 and 39 phase curves with saddle
point and stable and unstable node are shown in the original
~ ~’ plane.

The approximating curves are composed of portions of
the9e diiferent type9 (see fig. 40).

There is no need of avoiding pm,-ymcombinations which
lead to node-type approximating curves because only por-
tions of these curves are used. In the earlier publications it
appeared as if (in either one of the networks of approximating
curves) one set of curves had ti be formed by curves of
spiral charactir (complex roots A). However, this has
proved to be an unnecessary restriction. There might be
some trouble with node-type curves if large delays in switch-
ing should occur (e. g., delays in y’ =0 switching in fig. 40).



INVESTIGATION OF A NONLINEAR CONTROL SYSTEbf

(a)

(b)

,,r

v

(c)
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FIGURE 37.—Curves in w plane

FIQunn 38.—Phase CUIV?9tith s~ddle pOiIlt.

**
(a) 1’ (b) I

(a Stable node.
1(b Unstable node.

FIGURE 39.—Phaeo curves with nodal point.
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FmunE 40.—Composition of an approximating ourve.
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TABLE 1.—CODING SCHEME FOR SWITCHING LOGIC FROM

TABLE 3.—PARAMETERS FOR FIGURE 10

Fige.16(a) and 16(b)
I

Figs. 16(0) and 10(d)

Complete system

System 1: System 6:
&=–&52 ~~= –7.=2 P3=–PO=1O
A= –/91= 0.5 71=–71=0.5

ya= —’ye=10
&=–pl=l ‘yi=-yl=l

Chse (1) No derivative feedback

System 2: System 6:
19a=-&=O m=–yO=2
/sz=-ls,=o

&=–&=l) 73= —’ro-lo
72=-7,= 0.5 fl,=-f%=o ‘yZ=-yl=l

Case (2) No & sensing

System 3: System 7:
p8=–&=2 ‘y*= –70=2 L?a=-l%l=lo
1%=-191=2

73= —ye= 10
~= —7, =2 &=–/9l=lo 72=—7]=10

1

Case (3) No e sensing in derivative feedback loop and no e’ eem+
iug in proportional fecdbaok loop

System 4: System 8:
/33= -@o=2 73= —70=2
f?j=-~l= ‘2 72=—71=2

&=–&=lo %= —’YO=1O
A=-I3I=—1O ‘y,= -’y, ulo

TABLE 4.—AVERAGE PROPERTIES OF RELAYS FOR
SWITCHING CIRCUIT OF FIGURE 6

EQUATION (14)

[0, function>O; 1, function<O]

DecimalBinary Coded decimal -

Y’ e’ o D&cription: General Electric CR-2791 double-pole single-throw
relay mounted on 5Lprong Amphenol base with permanent alu-
minum dust cover

Comectious: ‘

,~, $ E:

1

Y e

0
0
1

:
0
1

:
0
1

;
o
1
1

0

;

:
5
6
7
8

1:
11
12
13
14
15

Electrical Properties Values

2.5 kilohms
5to loma

L Cd rdstance
Coa~t~rent for positive

Pull-in time
Drop-out time

TABLE 2.—hfATRIX OF ALLOWED J%. -r. COMBINATIONS
AS Determined BY ENCODED SWITCHING LOGIC
OBTAINED FROM EQUATION (14) m 2 mtiliseo

3 millisec

TABLE 5.—CORRESPONDENCE BETWEEN ADJUSTABLE
COMPUTER ELEMENTS AND PARAMETERS OF EQUA-

L+
‘rO 0000

1111

71 0001
1110 J

0100
1011

0101
1010

TION (8)

.

Cormponds
to

Units,
kilobmgElement

I 0110
1001

0010
1101 I I

(2D)-1

I

2D190)-I
2DPI)-1
2D&.)-l
2D~-1

[
70) -1
71)-1

[

,@-1

73)-’

100
100
100
100
100
100
100
100
100

I 0011
1100 I

1

(1) 13~ h chosen vrhen 0100 occurs, i. e., (y>O, ~<0, e>O, e’>0),
or when 1011 occurs, i. e., (y<O, y’>Oj e<O, e’<O);

(2) &yl ia ohosen vrhen 0101 ocours, i. e., >0, y’,<0, e>O, .#<O ,
? {or when 1010 occum, i. e., y<O, 11’>0, e<O, e’>o ;

(3) Am is not po=lble.


